Percolation for Coated Conductive Paper: Electrical Conductivity as a Function of Volume Fraction of Graphite and Carbon Black

نویسندگان

  • Haichao Li
  • Xueren Qian
  • Tianlu Li
  • Yonghao Ni
چکیده

Conductive papers were prepared via surface coating with graphite or carbon black using either carboxylated styrene butadiene latex or starch as the binder. It is of practical interest to determine the percolation threshold for the coated paper product made using a binary system consisting of conductive filler and binder. In this study, the electroconductivity threshold of various conductive papers was determined based on experimental data according to the percolation law. Results showed that the conductivity of coated, conductive paper is a function of the volume fraction of conductive filler, which can be described well by the percolation theory. The percolation thresholds of graphite/latex, graphite/starch, carbon black/latex, and carbon black/starch coatings were 17.66, 12.36, 11.71, and 8.69 vol.%, respectively. At concentrations higher than the percolation threshold, the conductivity of conductive paper using graphite as the conductive filler was much higher than that achieved using carbon black at a similar volume fraction. The present paper has significant practical implications for conductive paper technology using graphite filler based on surface coating technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical permittivity and conductivity of carbon black-polyvinyl chloride composites

Electrical conductivity and permittivity of carbon black-polyvinyl chloride composites were studied over a wide frequency spectrum (dc, 1.3 GHz). Conductivity of the bulk composites increases with higher volume fraction of carbon black as expected. However, the functional dependence of the increasing conductivity with carbon black loading is different below and above the percolation threshold b...

متن کامل

Electrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method

There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler con...

متن کامل

Effect of Chopped Carbon Fiber on Electrical and Thermal properties of Carbon Reinforced Epoxy Composites

This work presents an insight into the effect of conductive filler content on both electrical and thermal properties of a polymer composite system. The electrical conductivity of an insulating polymer can be achieved by dispersing conducting fillers (e.g., metal, graphite powder, carbon black, carbon fiber) in the polymer matrix. The resulting materials are referred to as conducting polymer com...

متن کامل

A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape), intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation t...

متن کامل

Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites

In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015